SN74ACT16245Q-EP 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCAS677A – MAY 2002 – REVISED JULY 2002

DL PACKAGE (TOP VIEW)

1DIR

1B1 2

1B2 3

GND 4

1B3 🛛 5

1B4 6

V_{CC} [] 7

1B5 8

1B6 9

GND 10

1B7 🛛 11

1B8 12

2B1 13

2B2 14

GND 15

2B3 16

V_{CC} [18

2B5 19

2B6 **1**20

GND 21

2B7 **1**22

2B8 23

2DIR 224

2B4 🛛 17

48 🛛 1 🖸

47 1A1

46 1 1A2

45 GND

44 🛛 1A3

43 | 1A4 42 | V_{CC}

41 1A5

40 1A6

39 GND

38 1A7

37 1A8

36 2A1

35 2A2

34 GND

33 2A3

32 🛛 2A4

31 VCC

30 2A5

29 2A6

28 GND

27 2A7

26 2A8

25 2 2 G

•	Controlled Baseline One Assembly/Test Site, One Fabrication Site 	
	Extended Temperature Performance of	

- Extended Temperature Performance of -40°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product Change Notification
- Qualification Pedigree[†]
- Member of the Texas Instruments Widebus™ Family
- Inputs Are TTL-Voltage Compatible
- 3-State Outputs Drive Bus Lines Directly
- Flow-Through Architecture Optimizes PCB Layout
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise

[†] Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, highly accelerated stress test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life.

description

The SN74ACT16245Q-EP is a 16-bit bus transceiver organized as dual-octal noninverting 3-state transceivers and designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The enable (\overline{G}) input can be used to disable the devices so that the buses are effectively isolated.

			•••••••	
T _A	A PACKAGE [‡]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 125°C	SSOP – DL	Tape and reel	SN74ACT16245QDLREP	ACT16245QEP

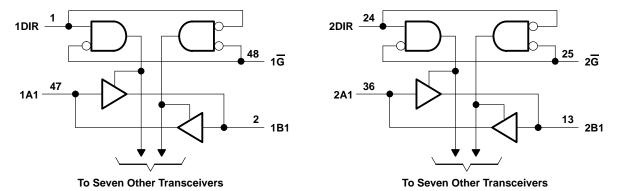
ORDERING INFORMATION

[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 2002, Texas Instruments Incorporated

SN74ACT16245Q-EP 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCAS677A - MAY 2002 - REVISED JULY 2002

FUNCTION TABLE

	(each section)										
	TROL UTS	OPERATION									
G	DIR										
L	L	B data to A bus									
L	н	A data to B bus									
н	Х	Isolation									

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±24 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±24 mA
Continuous current through V _{CC} or GND	±260 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2): DL package	1.2 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
Vcc	Supply voltage (see Note 4)	4.5	5.5	V
VIH	High-level input voltage	2		V
VIL	Low-level input voltage		0.8	V
VI	Input voltage	0	VCC	V
Vo	Output voltage	0	VCC	V
ЮН	High-level output current		-16	mA
IOL	Low-level output current		16	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	0	10	ns/V
Т _А	Operating free-air temperature	-40	125	°C

NOTES: 3. Unused inputs should be tied to V_{CC} through a pullup resistor of approximately 5 kΩ or greater to keep them from floating. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

4. All V_{CC} and GND pins must be connected to the proper-voltage power supply.

SN74ACT16245Q-EP 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCAS677A - MAY 2002 - REVISED JULY 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			N	Т	₄ = 25°C	;			UNIT
F	ARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	UNIT
			4.5 V	4.4			4.4		
		I _{OH} = -50 μA	5.5 V	5.4			5.4		
Vон		16	4.5 V	3.94			3.94		V
		$I_{OH} = -16 \text{ mA}$	5.5 V	4.94			4.94		
		$I_{OH} = -24 \text{ mA}^{\dagger}$	5.5 V				3.85		
		Lo. 50	4.5 V			0.1		0.1	
IOL = 50 I		I _{OL} = 50 μA	5.5 V			0.1		0.1	
VOL		1. 16 mA	4.5 V			0.36		0.5	V
		I _{OL} = 16 mA	5.5 V			0.36		0.5	
		I _{OL} = 24 mA [†]	5.5 V					0.5	
կ	Control inputs	V _I = V _{CC} or GND	5.5 V			±0.1		±1	μA
I _{OZ}	A or B ports [‡]	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5		±10	μA
ICC		$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V			8		160	μA
∆ICC§	ŝ	One input at 3.4 V, Other inputs at GND or V_{CC}	5.5 V			0.9		1	mA
Ci	Control inputs	V _I = V _{CC} or GND	5 V		4.5				pF
Cio	A or B ports	$V_{O} = V_{CC}$ or GND	5 V		16				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current I_I.

§ This is the increase in supply current for each input that is at one of the specified TTL-voltage levels rather than 0 V or V_{CC}.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Т	₄ = 25°C	;	MIN	МАХ	UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	WAA	
tPLH	A or B	B or A	3.2	6.9	9.3	3.2	11.5	20
^t PHL	AUB	BUIA	2.6	6.4	9.2	2.6	11.1	ns
^t PZH	G	B or A	2.7	6.4	9.1	2.7	10.9	
tPZL	G	DOLA	3.4	7.4	10.5	3.4	12.6	ns
^t PHZ	G	B or A	5.8	9.2	11.6	5.8	13.4	ns
t _{PLZ}	6	BUR	5.5	8.5	10.8	5.5	12.7	115

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CO	TYP	UNIT		
<u> </u>	Power dissipation capacitance per transceiver	Outputs enabled	C ₁ = 50 pF,	f = 1 MHz	52	ъĘ
Cpd	Power dissipation capacitance per transceiver	Outputs disabled	CL = 50 pF,		10	рF

SN74ACT16245Q-EP **16-BIT BUS TRANSCEIVER** WITH 3-STATE OUTPUTS SCAS677A - MAY 2002 - REVISED JULY 2002

 $\mathbf{2}\times \mathbf{V_{CC}}$ 0 TEST **S**1 **S1 500** Ω O Open Open tPLH/tPHL From Output \sim tPLZ/tPZL $2 \times V_{CC}$ Under Test GND tPHZ/tPZH $C_L = 50 \text{ pF}$ **500** Ω (see Note A) LOAD CIRCUIT Output 3 V Control 1.5 V 1.5 V (low-level 0 V enabling) - tPLZ tPZL -3 V Output ≈Vcc 1.5 V Input 1.5 V Waveform 1 50% VCC 0 V 20% V_{CC} S1 at $2 \times V_{CC}$ VOL (see Note B) ^tPLH ^tPHL ^tPZH tPHZ Output - Vон ۷он 50% V_{CC} Waveform 2 80% V_{CC} 50% V_{CC} Output 50% V_{CC} S1 at GND VOL ≈0 V (see Note B) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS**

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.
 - D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins I	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74ACT16245QDLREP	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
V62/03601-01XE	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

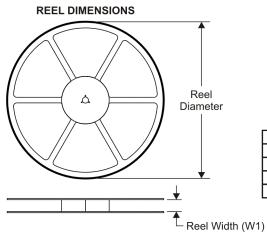
OBSOLETE: TI has discontinued the production of the device.

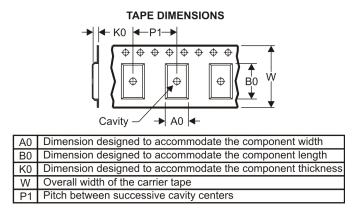
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

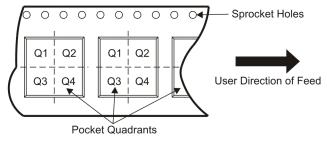
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

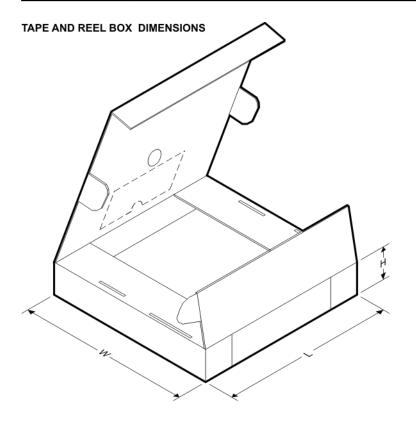

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal	
-----------------------------	--

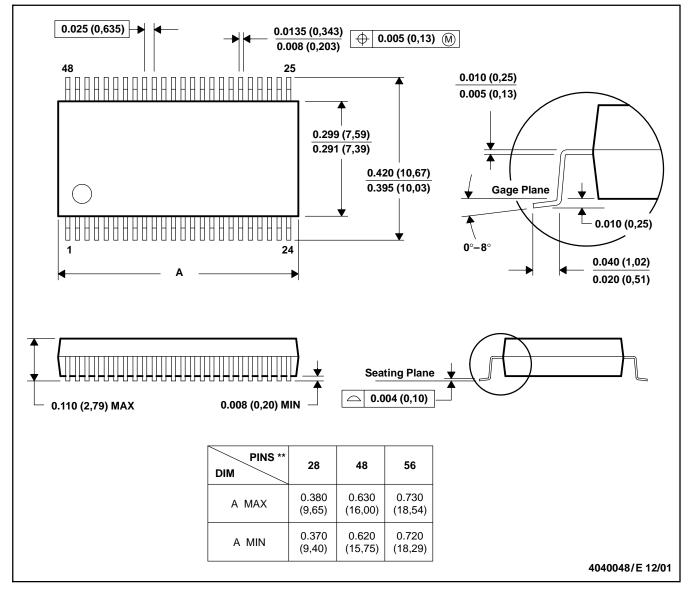
Device	Package Type	Package Drawing	Pins		Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ACT16245QDLREP	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

PACKAGE MATERIALS INFORMATION

5-Aug-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ACT16245QDLREP	SSOP	DL	48	1000	346.0	346.0	49.0


MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

DL (R-PDSO-G**)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated